

VJEC B. Tech. Syllabus 2024

Semester III

Electrical and Electronics Engineering Branch Code: EE

SEMESTER S3 MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE-3 (Common to B & C Groups)

Course code	GYMAT301	CIE Marks	40
Teaching Hours/Week (L:T:P:R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2Hrs. 30 MIn
Prerequisites (if any)	Basic knowledge in complex numbers	Course Type	Theory

Course Objectives:

- 1. To introduce the concept and applications of Fourier transforms in various engineering fields.
- 2. To introduce the basic theory of function of a complex variable, including residue integration and conformal transforms, and their applications.

Module No.	Syllabus Description	Contact Hours
1	Fourier integral, From Fourier series to Fourier integral, Fourier cosine and Sine integrals, Fourier Cosine and Sine transforms, Linearity, Transforms of Derivatives, Fourier Transform and its inverse, Linearity, Transforms of Derivative. (Text1: Relevant topics from sections 11.7, 11.8, 11.9)	9
2	Complex Function, Limit, Continuity, Derivative, Analytic functions, Cauchy-Riemann Equations(without proof), Laplace's Equations, Harmonic functions, Finding harmonic conjugate, Conformal mapping, Mappings of $w=z^2$, $w=e^z$, $w=\frac{1}{z}$, $w=\sin z$ (Text1: Relevant topics from sections 13.3,13.4,17.1,17.2,17.4)	9
3	Complex Integration: Line integrals in the complex plane (Definition& Basic properties), First evaluation method, Second evaluation method, Cauchy's integral theorem(without proof) on simply connected domain, Independence of path, Cauchy integral theorem on multiply connected Domain (without proof), Cauchy Integral formula(without proof) (Text1: Relevant topics from sections 14.1,14.2,14.3)	9
4	Taylor series and maclaurin series, Laurent series(without proof), Singularities and Zeros-Isolated Singularity, Poles, essential Singularities, Removable singularities, Zeros of Analytic functions-Poles and Zeros, Formulas for Residues, Residue theorem(without proof), Residue integration-Integral of rational Functions of $\cos\theta \& \sin\theta$ (Text1: Relevant topics from sections 15.4.16.1,16.2,16.3,16.4)	9

Course Assessment Method (CIE:40 marks, ESE:60 Marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (written)	Internal Examination-2 (written)	Internal Examination-3 (written)	Total
5	15	5	10	5	40

End Semester Examination Marks(ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions.

Part A	Part B	Total
 2 Questions from each module Total of 8 Questions, each carrying 3 Marks (8× 3 = 24 Marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4× 9 = 36 Marks) 	60

Course Outcomes (COs) and Assessment Tool

	Course Outcomes	Bloom's Knowledge Level (KL)	Assessment Tool
CO1	Determine the Fourier transforms of functions and apply them to solve problems arising in engineering.	К3	
CO2	Understand the analyticity of complex functions and apply it in conformal mapping.	К3	Written Exam
C03	Compute complex integrals using Cauchy's integral theorem and Cauchy's integral formula.	К3	& Assignments
CO4	Understand the series expansion of complex function about a singularity and apply residue theorem to compute real integrals.	K3	8

Note: 1.' Slight (Low), 2.- Moderate (Medium), 3. Substantial (High), - No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	-	2	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	2

CO-PO Mapping Table

Text Book						
Sl.No	Title of the Book	Name of the	Name of the	Edition and Year		
		Author/s	Publisher			
1	Advanced Engineering	Erwin Kreyszig	John Wily &Sons	10 th edition,2016		
	Mathematics					

	REFERENCE BOOKS							
Sl.No	Title of the Book	Name of the	Name of the	Edition and Year				
		Author/s	Publisher					
1	Complex Analysis	Dennis G.Zill,	Jones& Bartlett	3 rd edition,2015				
		Patrick						
		D.Shanahan						
2	Higher Engineering	B.V Ramana	McGraw-Hill	39 th edition,2023				
	Mathematics		Education					
3	Higher Engineering	B.S Grewal	Khanna Publishers	44 th edition, 2018				
	Mathematics							
4	Fast Fourier Transforms-	K.R.Rao, Do	Springer	1 st edition, 2011				
	Algorithms and applications	Nyeon Kim, Jae						
		Jeong Hwang						

SEMESTER S3

CIRCUITS & NETWORKS

Course Code	PCEET302	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	Introduction to Electrical Engineering	Course Type	Theory

Course Objectives:

- 1. This course analyses electrical circuits in steady-state and dynamic conditions with DC and sinusoidal excitations
- 2. It also describes the two-port networks in terms of various parameters.

Module	Syllabus Description			
No.	Synabus Description	Hours		
1	Mesh analysis and nodal analysis (Review only) - super mesh and super node -Superposition principle - source transformation – analysis with DC and AC (sinusoidal) excitation. Network Theorems - Thevenin's theorem - Norton's theorem - Maximum power transfer theorem - analysis with DC and AC (sinusoidal) excitation with independent and dependent sources. Reciprocity Theorem-application to the analysis of DC Circuits.	12		
2	 Resonance - series resonance - resonant frequency - variations of impedance and current with frequency - bandwidth - quality factor - parallel resonance (series RL in parallel with C -calculation of resonant frequency). Power in 3-phase circuits - complex power - active, reactive and apparent power in balanced load - steady state analysis of 3-wire unbalanced delta connected circuit - steady state analysis of 3-phase4-wire and 3-wire unbalanced star connected circuit - neutral shift 	12		
3	Laplace transforms (Review only) Transient response –Transient response of simple series and parallel RL and RC circuits with DC excitation and initial conditions – natural response and forced response – time constant - solution using Laplace transforms – transformed circuits in s-domain – solution using mesh analysis and nodal analysis Transient response of series RLC circuit with DC excitation and initial	12		
	conditions - solution using Laplace transforms			

SYLLABUS

	Transient response of simple series and parallel RL and RC circuits with sinusoidal excitation and zero initial conditions – solution using Laplace transforms	
4	Two port networks – Z, Y, h, T parameters – conditions for symmetry and reciprocity – relationship between parameters – interconnection of two port networks – series, parallel and cascade Coupled circuit – dot convention – fixing of dots – coefficient of coupling - conductively coupled equivalent	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination-3 (Written)	Total
5	15	5	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9marks.	
module.	• Two questions will be given from each module,	
• Total of 8 Questions, each	out of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	sub divisions.	
(8x3=24marks)	(4x9=36marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level(KL)	Assessment Tool
CO1	Apply circuit theorems to solve complex DC and AC electric networks	К3	Written exam and Assignment
CO2	Apply transformation from time domain to s-domain, solve dynamic electric circuits.	К3	Written exam
CO3	Solve series and parallel resonant circuits	К3	Written exam
CO4	Analyse three-phase networks in star and delta configurations under balanced and unbalanced conditions.	К3	Written exam

B. Tech 2024 S3

CO5	Describe two-port networks in terms of various parameters.	К3	Written exam and Assignment
CO6	Explain the steady-state behavior of coupled circuits with sinusoidal excitation	К3	Written exam

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3									3
CO2	3	3									3
CO3	3	3									3
CO4	3	3									3
CO5	3	3									3
CO6	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books						
Sl.No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Network Analysis	Van Valkenburg	Pearson	3 rd 2019		
2	Network Analysis and Synthesis	Ravish R Singh	Mc Graw Hill Education	2 nd 2019		
3	Electric Circuits & Networks	Suresh Kumar	Pearson	I st 2008		
4	Circuits and Networks, Analysis and Synthesis	A Sudhakar, Shyammohan S Palli	Mc Graw Hill Education	5 th 2017		

Video Links (NPTEL,SWAYAM)					
Module No.	Link ID				
1	NPTEL :: Electrical Engineering - NOC:Network Analysis				
2	NPTEL :: Electrical Engineering - NOC:Basic Electrical Circuits				

SEMESTER S3

DC MACHINES & TRANSFORMERS

Course Code	PCEET303	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. Describe the constructional details, working and analyse the performance of DC machines and transformers under various load conditions.

Module No	Syllabus Description	Contact Hours
1	Constructional details of dc machines - armature winding - lap and wave – simplex, progressive only – winding diagrams of simplex, lap wound, double layer, 12-slot, 4-pole, dc armature with 12 commutator segments – winding diagram of simplex wave wound, double layer, 16-slot, 6-pole, dc armature with 12 commutator segments (winding diagram not for evaluation) DC generator - principle of operation of DC generator – emf equation – numerical problems, Classification DC generators – steady-state equations –	15
	 Classification DC generators – steady-state equations – numerical problems DC shunt generator - no-load characteristics – critical field resistance, critical speed, voltage build-up - load characteristics – numerical problems Armature reaction - cross magnetising & demagnetising effect (computation of ampere-turns not required) – compensating winding – interpoles – commutation (concept only) – numerical problems Power flow diagram – losses and efficiency – maximum efficiency - numerical problems Parallel operation of DC shunt generators – load sharing – numerical problems 	

SYLLABUS

	DC motor – back emi – torque equation – numerical	
	problems Classification of DC motors – steady-state equations	
	– numerical problems	
	Characteristics of DC motors – numerical problems	
	Starting of DC motors – 3-point starter	
2	Braking – regenerative braking, dynamic braking and	
	plugging (concepts only)	12
	Speed control of DC shunt and series motors – field control	
	and armature control – numerical problems	
	Power flow diagram – losses and efficiency – numerical	
	problems Testing - Swinburne's test - Hopkinson's test -	
	retardation test - separation of rotational losses.	
3	Single phase transformers – constructional details - principle	10
	of operation - EMF equation - ideal and practical transformer	
	 numerical problems 	
	Operation on no load and on load - phasor diagram at	
	different load conditions - equivalent circuit - voltage	
	regulation – numerical problems	
	Losses and efficiency - condition for maximum efficiency -	
	numerical problems	
	Testing of transformers - polarity test - OC test, SC test -	
	Sumpner's test – separation of losses	
	Autotransformer – saving of copper – numerical problems	
4	3- phase transformer – construction - different connections	8
	of 3-phase transformers - Y-Y, Δ - Δ , Y- Δ , Δ -Y – numerical	
	problems	
	Difference between power transformer and distribution	
	transformer – all day efficiency – numerical problems	
	Scott connection for 3-phase to 2-phase conversion	
	Vector groupings – Yy0, Dd0, Yd1, Yd11, Dy1, Dy11	
	Parallel operation of 1-phase and 3-phase transformers -	
	essential and desirable conditions	
	On load and off-load tap-changers	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination-3 (Written)	Total
5	15	5	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from	Each question carries 9marks.	
each module.	• Two questions will be given from each module,	
• Total of 8 Questions,	out of which 1 question should be answered.	
each carrying 3 marks	• Each question can have a maximum of 3	00
	sub divisions.	
(8x3=24marks)	(4x9=36marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

СО	Course Outcome	Bloom's Knowledge Level (KL)	Assessment Tool
CO1	Describe the constructional details of DC machines.	K2	Written Exam
CO2	Analyse the performance DC generator under various load conditions.	К3	Written Exam & Assignment
CO3	Analyse the performance DC motor under various load conditions.	К3	Written Exam & Assignment
CO4	Analyse the performance of 1-phase transformer and auto- transformer under various load conditions.	К3	Written Exam & Assignment
CO5	Describe the constructional details and operation of 3-phase transformers.	K2	Written Exam

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

СО-РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2				2					3
CO2	3	3	1			2					3
CO3	3	3	1			2					3
CO4	3	3				2					3
CO5	3	3				2					3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Electrical Machinery	P. S. Bimbhra	Khanna Publishers	7 th edition 2021					
2	Electric Machines	D P Kothari & I J Nagrath	Tata Mc Graw Hill	5 th edition 2017					
3	DC Machines & Transformers	K Murugesh Kumar	Vikas Publishing House	2 nd edition 2004					
4	Theory & Performance of Electrical Machines	J.B. Gupta	S K Kataria	15 th edition 2022					

Video Links (NPTEL, SWAYAM...)

Sl. No.	Link ID
1	https://archive.nptel.ac.in/courses/108/105/108105155/
2	https://archive.nptel.ac.in/noc/courses/noc21/SEM1/noc21-ee24/

SEMESTER S3

ANALOG ELECTRONICS

Course Code	PBEET304	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. At the end of the course the student will be able to design of analog electronic systems using

BJT, FET and OP-Amp

SYLLABUS

Module	Syllabus Description			
No.	Syllabus Description			
1	 Review of Bipolar Junction Transistor- Introduction to DC Biasing – Base Bias – Voltage Divider Bias Common Emitter Amplifier – AC concepts —Role of coupling capacitors and emitter bypass capacitor- Common Emitter AC equivalent circuit Amplifier Gain - Calculation of amplifier gains and impedances using h parameter equivalent circuit. Emitter Follower Amplifier Power Amplifiers -AC load line – RC Coupled amplifiers – Transformer coupled Class A amplifiers – Class B amplifiers (Derivation of efficiency) – Class AB amplifiers – Class C and Class D amplifiers 	9		
2	Introduction to JFET – JFET biasing circuits – Common Source Amplifier Introduction to MOSFET -MOSFET construction -D-MOSFET, EMOSFET-Complementary MOSFET Amplifier Frequency Response – Basic concepts – BJT amplifier Frequency response – FET amplifier Frequency Response Feedback and Oscillator circuits – Feedback concepts – Feedback connection types – Practical Feedback circuits	0		
	Oscillators – Phase Shift Oscillator (Expression of frequency oscillation)– Wien Bridge Oscillator – Tuned Oscillator circuits – Crystal Oscillator	У		
3	Introduction to Operational Amplifiers (Op-Amps) – Operation Overview – Differential amplifiers and Op-Amp Specifications -Gain, CMRR and slew rate	9		
	Op- Amp Circuits – Inverting Amplifiers – Non inverting Amplifiers – Summing and Difference Amplifiers – Instrumentation Amplifiers			

B. Tech 2024 S3

	Differentiator and Integrator circuits-practical circuits Comparators: Zero crossing and voltage level detectors, Schmitt trigger.	
4	 Active Filters – Butterworth, Chebyshev and Bessel Filters, Low pass filter – high pass filter -band pass and notch filters- Butterworth Wave form generation using Op-Amps: Square, triangular and ramp generator circuits using Op-Amp- Effect of slew rate on waveform generation. Timer555 IC: Internal diagram of 555 IC– Astable and Monostable multivibrators using 555 IC 	9

In this curriculum Analog Electronics is the first Project Based Learning Course for the Electrical and Electronics Engineering students.

Project-Based Learning (PBL) is a student-centered teaching approach where the teacher serves as a facilitator and advisor.

Students are encouraged to think the need of the society and industry. Select a project topic relevant to the present society as well as covers topics in the syllabus.

In the first step they start defining problem statement with requirements and specifications.

In the second step, students work in groups to discover optimal and creative solutions by sharing their unique and inventive ideas for solutions.

They begin designing and developing components using contemporary tools and technology in the third level. Design the circuit and simulate it using available simulation tools. Also perform the hardware implementation to make it a product

Project Topic Suggestions:

- 1. Regulated power supply
- 2. Electronic Thermometer with diode/transistor/instrumentation amplifier
- 3. Audio Amplifier
- 4. Multistage amplifiers
- 5. Biomedical signal processing devices
- 6. RF Transmitter

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Examination- 1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Written)	Total
5	35	5	10	5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• 2 questions will be given from each	
module. Total of 8 Questions	module, out of which 1 question should be	
• each carrying 2 marks	answered.	
	• Each question can have a maximum of 2	
(8x2=16 marks)	sub divisions.	
	• Each question carries 6 marks.	
	(4x6=24marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

СО	Course Outcome	Bloom's Knowledge Level (KL)	Assessment Tool
CO1	Design BJT and FET amplifier circuits	K6	Written Exam and Project
CO2	Design Oscillator circuits	К3	Written Exam
CO3	Design and develop various OPAMP application circuits.	K6	Written Exam and Project
CO4	Implementation of active filters	K6	Written Exam and Project
CO5	Implement an electronic hardware circuit for the solution of a real time problem	K6	Project

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

B. Tech 2024 S3

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)											
CO-PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3	3						
CO2	3	3	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO5	3	3	3	3	3	3	1	3	3	3	3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	TextBooks								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Introductory Electronic Devices And Circuits	Robert T Paynter	Pearson Education	7 th edition 2008					
2	Electronic devices and Circuit Theory	Boylestad R. L.and L. Nashelsky	Pearson Education	11 th edition 2012					
3	Electronic Circuits : Analysis And Design	Donald A Neaman	Mc Graw Hill Companies	2 nd edition 2000					

	Reference Books								
Sl.No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition And Year					
1	Fundamentals of Analog Circuits	Floyd T.L.	Pearson Education	2 nd edition 2001					
2	Op-Amps and Linear Integrated Circuits	Gayakward R.A.	PHI Learning Pvt. Ltd.	4 th edition 2001					
3	Electronic Devices and Circuits	David A Bell	Oxford Higher Education	5 th edition 2008					
4	Linear Integrated Circuits	Choudhury R.	New Age International Publishers	6 th edition 2022					

B. Tech 2024 S3

	Video Links (NPTEL, SWAYAM)							
Module No. Link ID								
1	1 https://archive.nptel.ac.in/courses/108/105/108105158/							
2	2 https://archive.nptel.ac.in/courses/108/102/108102112/							
3	3 https://nptel.ac.in/courses/108106084							
4	4 https://www.allaboutcircuits.com/latest/analog/							
5	https://www.electronicsforu.com/							

PBL Course Elements

L:Lecture	R:Project(1Hr.),2FacultyMembers						
(3 Hrs.)	Tutorial	Practical	Presentation				
		Simulation/	Presentation				
Lecture delivery	Project identification	Laboratory Work/	(Progress and Final				
		Workshops	Presentations)				
Group	Project Analysis	Data Collection	Evaluation				
discussion							
Question answer Sessions/ Brain storming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)				
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 Minutes video				

Assessment and Evaluation for Project Activity

Sl.No	Evaluation for	Allotted Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

Clarity and feasibility of the project plan Research and background understanding Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

Individual contribution to the presentation

Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

Active participation and individual contribution

Teamwork and collaboration

4. Execution and Implementation (10 Marks)

Adherence to the project timeline and milestones

Application of theoretical knowledge and problem-solving

Final Result

5. Final Presentation (5 Marks)

Quality and clarity of the overall presentation

Individual contribution to the presentation

Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

Overall quality and technical excellence of the project

Innovation and originality in the project

Creativity in solutions and approach.

SEMESTER S3

INTRODUCTION TO ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

(Common to Group B and C)

Course Code	GYEST305	CIA Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Demonstrate a solid understanding of advanced linear algebra concepts, machine learning algorithms and statistical analysis techniques relevant to engineering applications, principles and algorithms.
- **2.** Apply theoretical concepts to solve practical engineering problems, analyze data to extract meaningful insights, Implement appropriate mathematical and computational techniques for AI and data science applications.

|--|

Module No.	Syllabus Description				
	Introduction to AI and Machine Learning: Basics of Machine Learning -				
1	types of Machine Learning systems-challenges in ML- Supervised learning				
1	model example- regression models- Classification model example- Logistic				
	regression-unsupervised model example- K-means clustering. Artificial	11			
	Neural Network, Types of Neural networks - Perceptron - Universal				
	Approximation Theorem (statement only)- Multi-Layer Perceptron - Deep				
	Neural Network- demonstration of regression and classification problems				
	using MLP.(Text-2).				

	Mathematical Foundations of AL and Data sciences Pole of linear algebra			
2	Mathematical Foundations of Al and Data science: Role of finear argeora			
-	in Data representation and analysis – Matrix decomposition- Singular Value			
	Decomposition (SVD)- Spectral decomposition- Dimensionality reduction	11		
	Decomposition (SVD)- Spectral decomposition- Dimensionality reduction			
	technique-Principal Component Analysis (PCA). (Text-1)			
	Applied Probability and Statistics for AI and Data Science: Basics of			
	probability-random variables and statistical measures - rules in probability-			
2		11		
3	Bayes theorem and its applications- statistical estimation-Maximum			
	Likelihood Estimator (MLE) - statistical summaries- Correlation analysis-			
	linear correlation (direct problems only)- regression analysis- linear			
	regression (using least square method) (Text book 4)			
	Basics of Data Science: Benefits of data science - use of statistics and			
4	Machine Learning in Data Science - data science process - applications of			
4	Machine Learning in Data Science - modelling process- demonstration of	11		
	ML applications in data science - Big Data and Data Science. (Text book-			
	5)			
	5)			

Course Assessment Method (CIA: 40 marks, ESE: 60 marks)

Continuous Internal Assessment Marks (CIA):

Attendance	Assignment/ Micro project/ IBM data science certification	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Written)	Total
5	15	5	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs) and Assessment Tool

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)	Assessment Tool
CO1	Apply the concept of machine learning algorithms including neural networks and supervised/unsupervised learning techniques for engineering applications.	К3	Written exam
CO2	Apply advanced mathematical concepts such as matrix operations, singular values, and principal component analysis to analyze and solve engineering problems.	К3	Written exam
CO3	Analyze and interpret data using statistical methods including descriptive statistics, correlation, and regression analysis to derive meaningful insights and make informed decisions.	К3	Written exam
CO4	Integrate statistical approaches and machine learning techniques to ensure practically feasible solutions in engineering contexts.	К3	Written exam

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3							3
CO2	3	3	3	3							3
CO3	3	3	3	3							3
CO4	3	3	3	3							3

B. Tech 2024 S3

		Text Books		
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year
1	Introduction to Linear Algebra	Gilbert Strang	Wellesley- Cambridge Press	6 th edition, 2023
2	Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow	Aurélien Géron	O'Reilly Media, Inc.	2nd edition,20 2 2
3	Mathematics for machine learning	Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong	Cambridge University Press	1 st edition. 2020
4	Fundamentals of mathematical statistics	Gupta, S. C., and V. K. Kapoor	Sultan Chand & Sons	9 th edition, 2020
5	Introducing data science: big data, machine learning, and more, using Python tools	Cielen, Davy, and Arno Meysman	Simon and Schuster	1st edition, 2016

Reference Books					
1	Data science: concepts and practice	Kotu, Vijay, and Bala Deshpande	Morgan Kaufmann	2 nd edition, 2018	
2	Probability and Statistics for Data Science	Carlos Fernandez - Granda	Center for Data Science in NYU	1 st edition, 2017	
3	Foundations of Data Science	Avrim Blum, John Hopcroft, and Ravi Kannan	Cambridge University Press	1 st edition, 2020	
4	Statistics For Data Science	James D. Miller	Packt Publishing	1 st edition, 2019	
5	Probability and Statistics - The Science of Uncertainty	Michael J. Evans and Jeffrey S. Rosenthal	University of Toronto	1 st edition, 2009	
6	An Introduction to the Science of Statistics: From Theory to Implementation	Joseph C. Watkins	chrome- extension://efaidnbmn nnibpcajpcglclefindmkaj https://www.math. arizo	Preliminary Edition.	

SEMESTER S3/S4 ECONOMICS FOR ENGINEERS

(Common to All Groups)

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- 2. Provide fundamental concept of micro and macroeconomics related to engineering industry.
- 3. Deliver the basic concepts of Value Engineering

SYLLABUS

Module No	Syllabus Description	Contact Hours
1	Basic Economics Concepts - Basic economic problems – Production Possibility Curve – Utility – Law of diminishing marginal utility – Law of Demand - Law of supply – Elasticity - measurement of elasticity and its applications – Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion – Economies of Scale – Internal and External Economies – Cobb-Douglas Production Function	6
2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts Firms and their objectives – Types of firms – Markets – Perfect Competition – Monopoly - Monopolistic Competition - Oligopoly (features and equilibrium of a firm) Behavioral Economics – Decision-making biases, bounded rationality, and engineering applications.	7
3	Monetary System – Money – Functions - Central Banking – Inflation - Causes and Effects – Measures to Control Inflation - Monetary and Fiscal policies – Deflation Taxation – Direct and Indirect taxes (merits and demerits) – GST, National income – Concepts - Circular Flow – Methods of Estimation and Difficulties - Stock Market – Functions- Problems faced by the Indian stock market – Demat Account and Trading Account – Stock market Indicators SENSEX and NIFTY	6

4	Value Analysis and value Engineering - Cost Value, Exchange Value, Use Value, Esteem Value - Aims, Advantages and Application areas of Value Engineering - Value Engineering Procedure - Break-even Analysis - Cost Benefit Analysis - Capital Budgeting - Process planning	6

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Micro Project	Internal Examination-1	Internal Examination- 2	Internal Examination- 3	Total
5	25	5	10	5	50

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B		
• Minimum 1 and Maximum 2	• Two questions will be given from each module, out		
Questions from each module	of which l question should be answered.		
• Total of 6 Questions, each	• Each question can have a maximum of 2 sub	50	
carrying 3 marks	divisions.		
(6x3 =18 marks)	• Each question carries 8 marks		
	(4x8 = 32 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

со	Course Outcome	Bloom's Knowledge Level (KL)	Assessment Tool
CO 1	Understand the fundamentals of various economic issues using laws and learn the concepts of demand, supply, elasticity and production function.	K2	Internal
CO 2	Develop decision making capability by applying concepts relating to costs and revenue, and acquire knowledge regarding the functioning of firms in different market situations.	K3	Exams and Micro Project
CO 3	Outline the macroeconomic principles of monetary and fiscal systems, national income and stock market.	K2	

	Make use of the possibilities of value analysis and engineering, and		
CO 4	solve simple business problems using break even analysis, cost	K3	
C04	benefit analysis and capital budgeting techniques.		

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	-	-	-	3	-	-	-	3	2
CO2	3	2	-	-	-	3	-	-	-	3	2
CO3	3	2	-	-	-	-	-	-	-	3	2
CO4	3	2	-	-	-	3	-	-	-	3	2

Note: 1.' Slight (Low), 2.- Moderate (Medium), 3. Substantial (High), - No Correlation

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill	2015		
2	Engineering Economy	H. G. Thuesen, W. J. Fabrycky	PHI	1966		
3	Engineering Economics	R. Paneerselvam	РНІ	2012		
4	Thinking, Fast and Slow	Daniel Kahneman	Farrar, Straus and Giroux	2011		
5	An Introduction to Behavioral Economics (3rd ed.)	Wilkinson, N., & Klaes M	Macmillan International Higher Education	2018		

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E	Mc Graw Hill	7 TH Edition		
2	Indian Financial System	Khan M. Y.	Tata McGraw Hill	2011		
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002		
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001		

SEMESTER S3/S4

ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Code	UCHUT347	CIE Marks	50
Teaching Hour/Week	2:0:0:0	ESE Marks	50
(L:T:P:R)			
Credits	2	Exam Hours	2Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

(Common to All Groups)

Course Objectives:

- 1. Equip with the knowledge and skills to make ethical decision and implement gender-sensitive practices in their professional lives.
- 2. Develop a holistic and comprehensive interdisciplinary approach to understanding engineering ethics principles from a prospective of Environment Protection and sustainable development.
- 3. Develop the ability to find Strategies for implementing sustainable Engineering solutions.

Module	Syllabus Description	Contact
No.		Hour
1	 Fundamentals of ethics – personal vs professional ethics, civic virtue, Respect for others, Profession and professionalism ingenuity, diligence and responsibility, integrity in design, development, and Research domains, Plagiarism, a balanced outlook on law - challenges - case studies, Technology and digital revolution – data, information and knowledge, Cybertrust and cybersecurity, data collection and Management, High Technologies: connecting people and places – accessibility and social impacts, managing conflict, Collective bargaining, Confidentiality, role of confidentiality in moral integrity, Codes of Ethics. Basic concepts in Gender Studies – sex, gender, sexuality, gender spectrum: beyond the binary, gender identity, gender expression, gender stereotypes, Gender Disparity and discrimination in education, employment and everyday life, History of women in science and technology, Gendered technology and innovations, Ethical value and practices in connection with gender – equity diversity & gender justice, Gender policy and women/transgender empowerment initiatives. 	6
2	Introduction to Environmental Ethics: Definition, importance and historical development of environmental ethics, key philosophical theories (anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering Principles: Definition and scope, triple bottom line (economic, social and environmental sustainability), life cycle analysis and sustainability metrics. Ecosystems and Biodiversity: Basics of ecosystems and their functions, Importance of biodiversity and its conservation, Human impact on ecosystems	6

SYLLABUS

B. Tech 2024 S3

	and biodiversity loss, An overview of various ecosystems in Kerala/India, and	
	its significance. Landscape and Urban Ecology: Principles of landscape	
	ecology, Urbanization and its environmental impact, Sustainable urban	
	planning and green infrastructure.	
	Hydrology and Water Management: Basics of hydrology and water cycle,	
	Water scarcity and pollution issues, Sustainable water management practices,	
	Environmental flow, disruptions and disasters. Zero Waste Concepts and	
	Practices: Definition of zero waste and its principles, Strategies for waste	
	reduction, reuse, reduce and recycling, Case studies of successful zero waste	
	initiatives. Circular Economy and Degrowth: Introduction to the circular	
3	economy model, Differences between linear and circular economies, degrowth	6
	principles, Strategies for implementing circular economy practices and	
	degrowth principles in engineering. Mobility and Sustainable	
	Transportation: Impacts of transportation on the environment and climate,	
	Basic tenets of a Sustainable Transportation design, Sustainable urban mobility	
	solutions, Integrated mobility systems, E-Mobility, Existing and upcoming	
	models of sustainable mobility solutions.	
	Renewable Energy and Sustainable Technologies: Overview of renewable	
	energy sources (solar, wind, hydro, biomass), Sustainable technologies in	
	energy production and consumption, Challenges and opportunities in	
	renewable energy adoption. Climate Change and Engineering Solutions:	
	Basics of climate change science, Impact of climate change on natural and	
	human systems, Kerala/India and the Climate crisis, Engineering solutions to	-
4	mitigate, adapt and build resilience to climate change. Environmental Policies	6
	and Regulations: Overview of key environmental policies and regulations	
	(national and international), Role of engineers in policy implementation and	
	compliance, Ethical considerations in environmental policy-making. Case	
	Studies and Future Directions: Analysis of real-world case studies, Emerging	
	Discussion on the set of maintain in any state of the set of the s	
	Discussion on the role of engineers in promoting a sustainable future.	

Course Assessment Method (CIE: 50 marks, ESE: 50) Continuous Internal Evaluation Marks (CIE):

Attendance	Portfolio	Internal	Internal	Internal	Total
		Examination-1	Examination-2	Examination- 3	
5	25	5	10	5	50

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through various courses.

SI No	Item	Particulars	Group/I ndividual (G/I)	Marks
1	Reflective Journal	Weekly entries reflecting on what was learned, personal insights, and how it can be applied to local contexts.	Ι	5
2	Micro Project (Detailed documentation of the project	 1 a) Perform an Engineering ethics Case Study analysis and prepare a report 1 b) Conduct a literature survey on 'Code of Ethics for Engineers' and prepare a sample code of ethics 2 Listen to a TED talk on a Gender-related tonic do a 	G	8
	including methodologies,	literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context	0	5
	findings and reflections)	3. Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV	G	12
3	Activities	One activity* each from Module II, Module III & Module IV	G	15
4	Final Presentation	A comprehensive presentation summarising the key takeaways from the course, personal reflections, and proposed future actions based on the learnings.	G	5
		Total Marks		50

*Can be taken from the given sample activities/projects

Evaluation Criteria:

- **Depth of Analysis:** Quality and depth of reflections and analysis in project reports and case studies.
- Application of Concepts: Ability to apply course concepts to real-world problems and local contexts.
- **Creativity**: Innovative approaches and creative solutions proposed in projects and reflections.
- **Presentation Skills**: Clarity, coherence, and professionalism in the final presentation.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 Minimum of one question from each module. Total of 6 questions, each carrying 3 marks. 	 Each question carries 8 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	50
(6 x 3 = 18 marks)	(4 x 8 = 32 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

Cours	se Outcomes	Bloom's Knowledge Level (KL)	Assessment Tool
CO1	Develop the ability to apply the principles of engineering ethics in their professional life.	K3	Written
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4	exam, Portfolio
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	K3	and course end survey
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	K4	
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3	

Note: K1- Remember, K2 - understand, K3 – Apply, K4 – Analysis, K5 – Evaluate, K6 – Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10	PO11
CO1	-	-	-	-	-	3	3	3	2	-	-
CO2	-	2	-	-	-	3	3	3	2	-	-
CO3	-	-	-	-	-	3	2	3	2	-	-
CO4	-	2	-	-	-	3	2	3	2	-	-
CO5	-	-	-	-	-	3	2	3	2	-	-

Note: 1.' Slight (Low), 2.- Moderate (Medium), 3. Substantial (High), - No Correlation

	Reference Books					
SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition & Year		
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011		
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006		
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023		
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi	Cambridge University Press & Assessment	2019		
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012		

6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006
7	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi	4" edition, 2014

Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.
- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.
- Analyze the green spaces in a local urban area and propose a plan to enhance urban
- ecology using native plants and sustainable design.
- Create a model of a sustainable urban landscape for a chosen locality in Kerala.

Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements calculate the water footprint, how to reduce the footprint, how to increase supply through rainwater harvesting, and how to decrease the supply-demand ratio.
- Implement a zero waste initiative on the college campus for one week and document the challenges and outcomes.
- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc)
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala

Module-IV

- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption What gadgets are being used? How can we reduce demand using energy-saving gadgets?
- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.
- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).
- Research and present a case study of an unsustainable engineering project in Kerala/India highlighting design and implementation faults and possible corrections/alternatives (e.g., a housing complex with water logging, a water management project causing frequent floods, infrastructure project that affects surrounding landscapes or ecosystems).

SEMESTER S3

CIRCUITS AND MEASUREMENTS LAB

Course Code	PCEEL307	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:0:3	ESE Marks	50
Credits	2	Exam Hours	2Hrs.30Min.
Prerequisites(if any)	 GXEST104: Introduction to Electrical and Electronics Engineering PCEET205: Measurements and Instrumentation 	Course Type	Lab

Course Objectives:

1. To train the students to familiarize and practice various measuring instruments and different transducers for measurement of physical parameters.

2. Students will also be introduced to a team working environment where they develop the necessary skills for planning, preparing and implementing basic instrumentation systems.

Expt. No.	Experiments
1	Verification of Superposition theorem.
2	Verification of Thevenin's theorem
3	Determination of impedance, admittance and power factor in RLC series circuit and to study the effect of reactive components on power factor .
4	3-phase power measurement using two-wattmeter method, and determination of reactive/apparent power drawn.
5	Resistance measurement using Wheatstone's bridge and extension of range of voltmeters.
6	Resistance measurement using Kelvin's bridge and extension of range of voltmeters.
7	Extension of instrument range using instrument transformers (CT and PT).
8	Calibration of 1-phase Energy meter at various power factors and phantom loading (minimum 3 conditions).
9	Calibration of 3-phase Energy meter using standard wattmeter

10	Determination of B-H curve, μ -H curve and μ -B curve of a magnetic specimen
11	Measurement of self inductance, Mutual inductance, and Coupling coefficient of a 1-phase transformer.
12	Calibration of meters (Ammeter/Voltmeter) using Potentiometers.
13	Determination of characteristics of transducers: LVDT, Strain gauge, and Load-cell
14	Demo experiments/ Simulation of circuits using the software MATLAB (a) Measurement of energy using Bidirectional meter (b) Familiarize smart energy meter (c) Measurement of electrical parameter using clamp on meter (b) Measurement of electrical variables using DSO (c) Power quality analyzers
	(d) Simulation of Circuits using software platform- Electric Vehicle Modeling, battery management etc.

10 experiments are mandatory out of 14 experiments.

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports/Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with			
Preparatory	Execution of work/ trouble	valid inference/	Viva	Record	Total
work/Design/	shooting/	Quality of	voce	Record	10141
Algorithm	Programming	Output			
10	15	10	10	5	50

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

• Endorsement by External Examiner: The external examiner shall endorse the record.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level(KL)	Assessment Tool
CO1	Analyse voltage current phasor relations of RLC circuits	К3	Continuous Internal Evaluation, End semester examination
CO2	Verify DC network theorems by setting up various electric circuits	К3	Continuous Internal Evaluation, End semester examination
CO3	Measure power in single and three phase circuits by various methods	К3	Continuous Internal Evaluation, End semester examination
CO4	Determine the calibration characteristics of various meters used in electrical systems	К3	Continuous Internal Evaluation, End semester examination
CO5	Determine magnetic characteristics of different electrical devices	К3	Continuous Internal Evaluation, End semester examination
CO6	Analyze the characteristics of various types of transducer systems	К3	Continuous Internal Evaluation, End semester examination
CO7	Determine electrical parameters using various bridges	К3	Continuous Internal Evaluation, End semester examination
CO8	Analyze the performance of various electric circuits using modern tools.	К3	Continuous Internal Evaluation, End semester examination

Note: K1- Remember, K2-Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	PO11	PSO1	PSO2
CO1	3		2					2			3	3	1
CO2	3	3	2					2			3	3	1
CO3	3	3						2			3	3	1
CO4	3	3						2			3	3	1
CO5	3	3						2			3	3	1
CO6	3	3	2		3			2			3	3	1
CO7	3	3						2			3	3	1
CO8	3	3	2		3			3			3	3	1

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	A course in Electrical and Electronic Measurements & Instrumentation,	A.K. Sawhney	Dhanpat Rai Publishers	2023
2	A course in Electrical& Electronic Measurement & Instrumentation	J.B. Gupta	S.K. Kataria & Sons Publishers	14th Ed., 2014
3	Electronic Instrumentation	Kalsi H.S	Tata Mc Graw Hill, New Delhi.	4th Ed., 2019

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

• Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding

of the upcoming experiment.

• Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (10 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

5. Record (5 Marks)

Completeness, clarity, and accuracy of the lab record submitted

Preparation and Pre-Lab Work (7	Preparation and Pre-Lab Work (7 Marks)				
Description	Score	Marks			
		Scored			
Fully prepared, pre-lab work complete and detailed	7				
Well prepared with minor omissions.	6				
Good preparation, some missing points.	5				
Partially prepared; pre-lab work incomplete.	4				
Minimal preparation.	3				
Very poor preparation.	2				
Almost no preparation.	1				
Not prepared at all.	0				

ASSESSMENT RUBRICS Preparation and Pre-Lab Work (7 Mark

Description	Score	Marks Scored
Excellent execution, all steps followed with precision.	7	
Experiment conducted very well with minor slips.	6	
Good execution with some errors.	5	
Basic experiment done but lacks accuracy.	4	
Poor conduct, key steps missed.	3	
Very poor execution.	2	
Attempted but largely incorrect.	1	
Not done.	0	

• Conduct of Experiments (7 Marks)

• Lab Reports and Record Keeping (6 Marks)

Description	Score	Marks
		Scored
Complete, neat, and accurate records.	6	
Well written with small errors.	5	
Good, but needs improvements.	4	
Incomplete or untidy.	3	
Major parts missing.	2	
Very poor record.	1	
No report submitted.	0	

• Viva Voce (5 Marks)

Description	Score	Marks Scored
Excellent understanding and confident answers.	5	
Good understanding with minor mistakes.	4	
Moderate knowledge with some difficulty.	3	
Poor understanding.	2	
Very limited responses.	1	
Did not attend or answer.	0	
Total marks (out of 25)		
Signature of the staff		

SEMESTER S3

ANALOG ELECTRONICS LAB

Course Code	PCEEL308	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2Hrs.30Min.
Prerequisites(if any)	Nil	Course Type	Lab

Course Objectives:

- 1. Design of Transistor and Op-amp Circuits
- 2. Simulation and hardware implementation of the circuits

Expt. No.	Experiments
1	Clipping circuits using diodes
2	Clamping circuits using diodes.
3	Basic RC circuits- High pass and Low pass filters
4	Emitter Follower Amplifier
5	RC coupled amplifier using BJT in CE configuration - Measurement of gain, BW and plotting of frequency response.
6	Design and testing of voltage regulators – Zener and series
7	Design and set-up of inverting and non-inverting amplifiers.
8	Op-amps circuits - Scale changer, adder, integrator, and differentiator.
9	Precision rectifier using Op-amp.
10	Op- Amp Oscillators – RC Phase shift and Wien Bridge Oscillator
11	Waveform generation– Triangular and saw tooth waveform generation using OPAMPs.
12	Basic comparator and Schmitt trigger circuits using Op-amp (Use comparator ICs such as LM311).
13	Astable and Monostable circuit using 555IC.
14	Simulate and observe the generation of a sinusoidal waveform using a Wien Bridge Oscillator model using MATLAB.
15	Simulate a small-signal BJT amplifier using MATLAB and study voltage gain and phase shift.

10 experiments are mandatory out of 13 experiments.

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports/Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ trouble shooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

• Endorsement by External Examiner: The external examiner shall endorse the record.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level(KL)	Assessmen t Tool
CO1	Use the various electronic instruments and for conducting experiments.	K1	Continuous Internal Evaluation, End semester examination
CO2	Design and develop various electronic circuits using diodes and Zener diodes.	К3	Continuous Internal Evaluation, End semester examination
CO3	Design and implement amplifier and oscillator circuits using BJT and JFET.	К3	Continuous Internal Evaluation, End semester

B. Tech 2024 S3

			examination
CO4	Design and implement basic circuits using IC (OPAMP and 555 timers).	К3	Continuous Internal Evaluation, End semester examination
CO5	Simulate electronic circuits using any circuit simulation software.	К3	Continuous Internal Evaluation, End semester examination
CO6	Use PCB layout software for circuit design	K2	Continuous Internal Evaluation, End semester examination

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	PO11	PSO1	PSO2
CO1	3											3	1
CO2	2	3	3	3	3			3	3			3	1
CO3	2	3	3	3	3			3	3			3	1
CO4	2	3	3	3	3			3	3			3	1
CO5	2	3	3	3	3			3	3			3	1
CO6	3							3	3			3	1

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Introductory Electronic Devices And Circuits	Robert T Paynter	Pearson Education	6 th 2020						
2	Electronic devices and Circuit Theory	Boylestad R.L. and L. Nashelsky	Pearson Education	11 th 2012						
3	Electronic Circuits: Analysis And Design	Donald A Neaman	Mc Graw Hill Companies	3 rd 2006						

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

- 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)
 - Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
 - Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.
- 2. Conduct of Experiment/Execution of Work/Programming (15 Marks)
 - Procedure and Execution: Adherence to correct procedures, accurate execution of

experiments, and following safety protocols.

- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (10 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

ASSESSMENT RUBRICS

• Preparation and Pre-Lab Work (7 Marks)

Description	Score	Marks Scored
Fully prepared, pre-lab work complete and detailed.	7	
Well prepared with minor omissions.	6	-
Good preparation, some missing points.	5	-
Partially prepared; pre-lab work incomplete.	4	
Minimal preparation.	3	
Very poor preparation.	2	
Almost no preparation.	1	
Not prepared at all.	0	

• Conduct of Experiments (7 Marks)

Description	Score	Marks Scored
Excellent execution, all steps followed with precision.	7	
Experiment conducted very well with minor slips.	6	
Good execution with some errors.	5	
Basic experiment done but lacks accuracy.	4	
Poor conduct, key steps missed.	3	
Very poor execution.	2	
Attempted but largely incorrect.	1	
Not done.	0	

•	Lab	Reports	and	Record	Keeping	(6	Marks)
---	-----	---------	-----	--------	---------	----	--------

Description	Score	Marks Scored
Complete, neat, and accurate records.	6	
Well written with small errors.	5	
Good, but needs improvements.	4	
Incomplete or untidy.	3	
Major parts missing.	2	
Very poor record.	1	
No report submitted.	0	

Viva Voce (5 Marks)

Description	Score	Marks Scored
Excellent understanding and confident answers.	5	
Good understanding with minor mistakes.	4	
Moderate knowledge with some difficulty.	3	
Poor understanding.	2	
Very limited responses.	1	
Did not attend or answer.	0	
Total marks (out of 25)		

CERTIFICATE OF APPROVAL

This is to certify that the syllabus for the courses of Semester 3 of the B.Tech Programme in Electrical and Electronics Engineering has been reviewed and duly approved by the following academic bodies of Vimal Jyothi Engineering College:

- 1. The Board of Studies in Electrical and Electronics Engineering, in its meeting held on 29/04/2025.
- 2. The Academic Council, in its meeting held on 12/5/2025.

This syllabus shall be implemented with effect from the academic year 2025–2026 onwards.

5625

HoD/Program Coordinator

NGINEERIA Date CHEMPERI-670

Dean Academics

Principal

PRINCIPAL VIMAL JYOTHI ENGINEERING COLLEGE CHEMPERI - 670632