BRANCH: Applied Electronics and Instrumentation/ Electronics and Instrumentation Engineering

SEMESTER - 8

Course Code	Course Name	Л	L-T-P	Credits	Exam Slot
AE402	Analytical Instrumentation	1T	3-0-0	3	A
AE410	Power Plant Instrumentation		3-0-0	- 3	В
	Elective4		3-0-0	3	С
	Elective 5 (Non Departmental)		3-0-0	3	D
AE492	Project			6	S
Total Credits	Total Credits = 18 Hours: 30 Cumulative Credits = 180				

Total Credits = 18

Cumulative Credits= 180

Elective 4:-

. AE462	Optimal Control System
---------	------------------------

- Non-Linear Control System 2. AE464
- 3. AE466 **Industrial Robotics**
- 4. AE468 Nano Electronics
- Petroleum Engineering 5. AE472

510

2014

Course	Course name	L-T-P-Credi	its	Year of
code			In	troduction
AE402	ANALYTICAL INSTRUMENTATION	3-0-0-3		2016
Prerequi	site : Nil			
Course o	bjectives			
• To	preview background information required for stud	lying virtual in	nstrumer	ntation.
• To	study the basic building blocks of virtual instrum	nentation.		
• To	study the various graphical programming environ	nment in virtua	al instru	mentation.
• To	study a few applications in virtual instrumentation	n. 🛆 🔥	NA	
Syllabus	AL MOUL N	UTT I	I VI	
Fundame	ntals of analytical instruments -Classification	n of instrum	iental t	echniques -
Electrom	agnetic radiation- Electromagnetic spectrum- Abs	orption spectro	oscopy ·	- Ultra violet
and visib	le absorption spectroscopy - Colorimeters/ phot	tometers - Sp	ectro pl	notometers -
Infra red	spectroscopy - Atomic absorption spectrophotome	eters - Fluoreso	cence sp	ectroscopy -
Raman s	pectrometer - Mass spectrometer - Nuclear Ma	gnetic Resona	ance sp	ectroscopy -
Electron	spectroscopy - X- Ray spectrometers - Chromato	ographic proce	ess – Cla	assification -
Gas chro	matography - Liquid Chromatography - High p	ressure Liquid	d Chron	natography -
Industrial	Gas analysers - Gas analysers - Blood PH measu	rement – Thin	ı film te	chnology for
gas senso	rs- Thermal Sensors.			
Expected	outcome			
• A	t the end of the semester students will be able to o	btain compreh	ensive k	nowledge
111	analytical instrumentation and some of its applica	itions.		
Text Boo		A 1 ' 1) TT1	1	1 1
1. SI	Koog, Holler, Nieman, "Principles of Instrumental	Analysis", The	omson t	ooks-cole
pi 2 V	iblications, 5th edition.	1 CA 1		D 11' 1
2. W	illard, Merritt, Dean, Settle, "Instrumental Method	ds of Analysis	, CBS	Publishers
X.	Distributors, New Delhi, Seventh edition.			
Defenence	o Doolyg			
	e DOOKS	al Analysis"	MaGre	
	alen w. Ewing, Instrumental Methods of Chemic	cal Allarysis,	, MCGIE	ıw-пШ
	S. Khandnur, "Handbook of Analytical Instrume	nte" Toto M	Grow	LT:11
2. K	blications 3rd edition	ins , rata wi	colaw	1 1 1 1 1
3 R	obert D. Braun, "Introduction to Instrumental Ans	lycie" McG	raw_Hill	Book
5. K	ompany	ilysis,, wedi	1aw-1111	DOOK
	Course Plan			
		6		Semester
Module	Contents 4		Hours	Exam
mouule	contents	-	iiouis	Marks
T	Introduction to Analytical Instrumentation: Fund	amentals of	6	15%
-	analytical instruments: Elements of an analytical	instrument	0	10,0
	– PC based analytical instruments –Classi	fication of		
	instrumental techniques. Electromagnetic	radiation-		
	Electromagnetic spectrum- Laws relating to a	osorption of		
	radiation. Absorption spectroscopy: Absorption	instruments		
	- Radiation sources- Optical filters- Mono	chromators-		
	Detectors. Ultra violet and visible absorption spe	ctroscopy.		
II	Colorimeters/ photometers: Single beam and de	ouble beam	7	15%
	filter photometer – Spectro photometers: Single	e beam and		

	double beam spectro photo meters- Infra red spectroscopy: Basic components- Radiation sources- Monochromators- Detectors. Flame Photometry: Principle and constructional		
	details of flame photometer- Emission system – Optical		
	Theoretical concepts Instrumentation: Radiation sources -		
	Burners and flames - Plasma excitation sources - Optical		
	and electronic system.		
	FIRST INTERNAL EXAMINATION	N.A.	
III	Fluorescence spectroscopy: Principle of fluorescence -	7	15%
	Measurement of fluorescence – Single beam and double beam filter fluorimeter- Ratio fluorimeter. Spectro fluorimeters. Raman spectrometer- Basic theory-Photo acoustic spectroscopy- Photo thermal spectroscopy. Mass spectrometer: Principle of operation- Magnetic deflection mass spectrometers. Components of a mass spectrometer	AL	
	Inductively coupled plasma mass spectrometer		
IV	Nuclear Magnetic Resonance spectroscopy: Basic principle – Constructional details of NMR spectrometer – Nuclear radiation detectors. Electron Spin Resonance spectrometer: Basic ESR spectrometer – Electron spectroscopy: Instrumentation for electron spectroscopy. X- Ray spectrometers: X – ray spectrum –Instrumentation for x –ray spectrometry. X-ray diffractometers- X-ray absorption meters- X- ray fluorescence spectrometry.	7	15%
	SECOND INTERNAL EXAMINATION		
V	Chromatography: Chromatographic process –	7	20%
	Classification- Terms in chromatography- Gas		
	chromatography: Block diagram- Principle - Constructional details – Column details- GC detectors. Liquid Chromatography: Types of liquid chromatography- High pressure Liquid Chromatography (HPLC): Principle- Constructional details.		
VI	Industrial Gas analyzers- pH meters- Conductivity meters -	8	20%
	Dissolved oxygen meters- Sodium analyser- Gas analysers- Paramagnetic oxygen analyser - CO analysers - Flue gas analysers- Blood PH measurement - Thin film technology for gas sensors- Basic concepts. Measurement techniques and application of gas sensors. Thermal Sensors:- Radiation Sensors, Mechanical Sensors and Bio-Chemical sensors.		
	END SEMESTER EXAMINATION		

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

Course	Course name	L-T-P-	Year of		
code		Credits	Introduction		
AE410	POWER PLANT INSTRUMENTATION	3-0-0-3	2016		
Prerequis	ite : Nil				
Course O	bjective				
• To	introduce the basics of Power generation				
• To	enable the design of power plant control using variou	is methods			
Syllabus		T 4 4			
Survey of	methods of power generation-Boiler -P & I diagram	n of boiler -	Measurement in		
boiler and	turbine-Measurements in power plants -Controls in	boiler-Nucl	ear power plant		
instrumen	tation.	CA	1		
Expected	outcome	L.A			
At the end	of the semester students will be	1/			
i. Fa	miliar with the basics of Power plant and power genera	tion.			
ii. Fa	miliar with the design of Analysers and control loops u	sed in power	plant.		
Text Bool	ζ <u>s</u>				
1. Gi	ll A.B, "Power Plant Performance", Butterworth, Lond	lon, 1984.			
2. P.C	C Martin, I.W Hannah, "Modern Power Station P	<i>ractice</i> ", Bi	ritish Electricity		
Int	ernational Vol. 1 & VI, Pergamon Press, London, 1992	2.			
3. Sa:	m. G.Dukelow, " <i>The Control of Boilers</i> ", 2nd Edition,	ISA Press, N	lew York, 1991		
D.C.	N 1				
Reference		NU NZ 1	1001		
I. Da	vid Lindsley, "Boiler Control Systems", McGraw Hill,	New York,	1991.		
2. Jei	vis M.J, "Power Station Instrumentation", Butterworth	Heinemann	, Oxford, 1993.		
3. Mo	odern Power Station Practice, Vol.6, Instrumentati	ion, Control	s and Testing",		
Pe	rgamon Press, Oxford, 19/1.				
	Course Flan		Somostor		
Module	Contents	— Но	urs Exam		
mouuic	contents	110	Marks		
I	Brief survey of methods of power generation-	hvdro. 6	15%		
-	thermal, nuclear, solar and wind power		1070		
	Introduction to thermal power plant processes – bu	uilding			
	blocks - ideal steam cycles				
Π	Boiler – types, Boiler - turbine units and its range sy	stems, 7	15%		
	feed water systems, steam circuits, air preheating.	Soot	-		
	blowers, combustion process, products of combustion	n, fuel			
	systems, treatment of flue gases, smoke d	ensity			
	measurements, steam turbine, condensate sy	stems.			
	alternator, feed water conditioning, turbine bypass y	valves.			
	Importance of instrumentation in power generat	ion –			
	details of boiler processes. combined cycle power	plant.			
	power generation and distribution, burner tilting	and			
	bypass damper.	~			
	×1 1				
	FIRST INTERNAL EXAMINATIO	N N			
III	FIRST INTERNAL EXAMINATIO Measurement in boiler and turbine: Metal tempe	N erature 7	15%		

	System for pressure measuring devices, smoke and dust monitor, flame monitoring. Introduction to turbine supervising system, pedestal vibration, shaft vibration, eccentricity measurement. Installation of non-contracting transducers for speed measurement.		
IV	Measurements in power plants: Electrical measurements – current, voltage, power, frequency, power factor etc. – non electrical parameters – flow of feed water, fuel, air and steam with correction factor for temperature – steam pressure and steam temperature – drum level measurement – radiation detector – smoke density measurement – dust monitor.	AL	15%
	SECOND INTERNAL EXAMINATION		
V	Controls in boiler: Boiler drum level measurement methods, feed water control, soot blowing operation, steam temperature control, Coordinated control, boiler following mode operation, turbine following mode operation, selection between boiler and turbine following modes. Distributed control system in power plants interlocks in boiler operation. Cooling system, Automatic turbine runs up systems.	8	20%
VI	Nuclear power plant instrumentation: Piping and instrumentation diagram of different types of nuclear power plant, Nuclear reactor control loops, reactor dynamics, pulse channel and logarithmic instrumentation, control and safety instrumentation, reliability aspects.	7	20%
	END SEMESTER EXAMINATION		

Maximum Marks:100

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

Estd.

(15 x 2 = 30 marks)

Exam Duration: 3 Hours

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

Course	Course name	L-T-P-	Year of
code		Credits	Introduction
AE462	OPTIMAL CONTROL SYSTEM	3-0-0-3	2016
Prerequis	ite : Nil		
Course O	ojectives		
• To	formulate various types of optimal control problems		
• To	learn calculus of variations and dynamic programming	for solving	optimal control
pro	blems		
Syllabus	ADI ARIDI II KA		A
Optimal c	ontrol problem formulation. Dynamic optimization-	Unconstrair	ned Problems -
Calculus o	f Variations. Continuous time and Discrete time Line	ar Quadrati	c regulator and
Tracking p	roblems-LQG Problems. Constrained Problems- Pontry	agin's Mini	mum Principle-
Dynamic H	Programming-Constrained Problems.	T'	land and a second s
Expected	outcome	Y	
The stude	nts will be able to		_
i. Un	derstand the concepts related to calculus of variations ar	nd optimal c	ontrol theory
ii. Ap	ply the optimal control concepts to formulate and solve	various type	es of control
pro	blems		
Text Book	s:		
1. Do	nald E. Kirk, Optimal Control Theory: An Introduction,	Prentice-Ha	all networks
ser	ies, 1970		
2. M.	Gopal, "Modern Control System Theory", Wiley Eastern	n, New Dell	ni, second
Edi	tion, 1993	76	
Reference	s:		
1. Bri	an D O Anderson and John B Moore, "Optimal Control	- Linear Qu	adratic
Me	thods", Prentice Hall of India, 1991		
2. De	sineni Subbaram Naidu, Optimal Control System, CRC	press	
3. Sag	ge.A.P & White.C.C, Optimum Systems Control, Prentic	e Hall	
	Course Plan		
			Semester
Module	Contents	Ho	urs Exam
т		4	Marks
1	Optimal control problem - Problem formulation	on – 4	15%
	Mathematical model – Physical constraints – Perform	mance	
	measure – Optimal control problem – Form of op		
	control – Performance measures for optimal control pr	oblem	
	- Selection of performance measure - Open loop and o	closed	
	optimal control problems. Constal form of perform		
	monsure	nance	
тт	Fundamental concepts and theorems of calculus of veri	ations 6	1504
11	Fuller Lagrange equation and extremal of function	ations 0	1.3 70
	the variational approach to solving optimal control pro	blems	
	Hamiltonian and different boundary conditions for or	otimal	
	- manifolian and unreferit boundary conditions for of	punnar	
	FIRST INTERNAL FYAMINATION	J	I
III	LINEAR OUADRATIC OPTIMAL CONTROL SVST		15%
***	Problem formulation – Finite time Linear Out	dratic	1.5 /0
	Troorem rormulation – Time time Lineal Oua	man	
II	measure – Optimal control problem – Form of op control – Performance measures for optimal control pr – Selection of performance measure -Open loop and o loop form of optimal control. Performance measure optimal control problems – General form of perform measure Fundamental concepts and theorems of calculus of vari – Euler - Lagrange equation and extremal of function the variational approach to solving optimal control pro - Hamiltonian and different boundary conditions for op control problem FIRST INTERNAL EXAMINATION LINEAR QUADRATIC OPTIMAL CONTROLSYST Problem formulation – Finite time Linear Oua	ptimal oblem closed es for mance ations 6 nals - blems ptimal TEM - 8 udratic	15%

	Time-invariant case – Stability issues of Time-invariant regulator, Linear Quadratic Tracking system: Finite time case and Infinite time case— Optimal solution of LQR problem Different techniques for solution of algebraic Riccati equation LQG Problem		
IV	DISCRETE TIME OPTIMAL CONTROL SYSTEMS Variational calculus for Discrete time systems – Discrete time optimal control systems:-Fixed final state and open- loop optimal control and Free-final state and open-loop optimal control, Closed loop optimal control matrix difference Riccati equation – optimal cost function Discrete time linear state regulator system – Steady state regulator system		20%
	SECOND INTERNAL EXAMINATION		
V	Dynamic Programming:- Principle of optimality, optimal control using Dynamic Programming –Interpolation-A recurrence relation of dynamic programming-Computational procedure for solving Control problems-Discrete linear regulator problems, Hamilton Jacobi-Bellman Equation – Continuous linear regulator problems	9	20%
VI	CONSTRAINED OPTIMAL CONTROL SYSTEMS – Pontryagin's minimum principle and sate inequality constraints –Minimum Time optimal problems Minimum control effort Problems – Optimal Control problems with State Constraints	7	20%
	END SEMESTER EXAMINATION		

Maximum Marks:100

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

(15 x 2 = 30 marks)

Exam Duration: 3 Hours

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

(20 x 2 = 40 marks)

2014

Estd.

Course	Course name	L-T-P-		Year Of
code		Credits	In	troduction
AE464	NON-LINEAR CONTROL SYSTEM	3-0-0-3		2016
Prerequis	ite : AE301 Control system			
Course of	ojectives			
• <u>To</u>	familiarize the modelling of simple mechanical system	ıs.		
• To	analyse stability of nonlinear control systems			
Syllabus		T		
Linear vs	non-linear system - Common Nonlinearities in con	trol systen	1s - n	hass spring
system - r	nethod of iscocianes- phase plane analysis of linear sy	stems- pha	ise pla	ne analysis
functions	of common nonlinearities. Concents of Stability Line	rization or	ntais -	Describing
- I vanuno	y's Direct Method - Generation of Lyapunov functions	-Popov's	stabili	ty criterion
- Non-Lir	ear control system design-stabilisation problems-trad	cking prob	lems	- Issues in
constructi	ng non-linear controllers- available methods of non-line	ar control	design	
Expected	outcome		0	*
• At	the end of the semester students must be able to unders	tand and ar	nalyse	the
dif	ferent behaviour of system performances and Stability t	echnique.		
Text Bool	ζ <u>s</u>			
1. Jea	n Jacques Slotine and Weiping Li, "Applied Nonlinear	Control",	Prentie	ce Hall
	x_{1} [199].	'd F 1		
2. H. 2. M	K. Khalil., "Nonlinear Systems", Pearson Education, 3"	Ed.	11:11	I dd Marry
5. M	Gopal "Digital Control and State variable Methods", 18	ata McGrav	V-H1II	Lta, New
	ann, 2005.	one		
. 110	Course Plan	5115		
	Course Fina			Semester
Module	Contents	H	ours	Exam
		/		Marks
Ι	Introduction: Linear vs non-linear system- non-	linear 7		15%
	systems and equilibrium points- non-linear systems	ystem	1	
	behavior-examples-Common Nonlinearities in co	ontrol	1 - I	
	systems-Autonomous and non-autonomous sys	tems-		
	modelling of simple pendulum- mass spring sy	stem-		
TT	analysis and design of nonlinear system.	n of 7		150/
11	phase portraits, method of iscoclanes, phase plane an	alveis		1 J 70
	of linear systems- phase plane analysis of non-	linear		
	systems- local behaviour of non-linear systems	-limit		
	cycles- Stability- poincare- bendixon theorems.			
	FIRST INTERNAL EXAMINATIO	N		
III	Describing Function: Describing Function Fundamer	itals - 7		15%
		italis /		1370
	Describing functions of common nonlinearities-hyst	steris,		1370
1	Describing functions of common nonlinearities-hysbacklash, relay, deadzone, saturation and combined ef	steris, fects-		1370
	Describing functions of common nonlinearities-hyst backlash, relay, deadzone, saturation and combined ef stability analysis and limit cycles.	steris, fects-		1370
187	Describing functions of common nonlinearities-hystoacklash, relay, deadzone, saturation and combined efficient stability analysis and limit cycles.	steris, fects-		15 /0
IV	Describing functions of common nonlinearities-hyst backlash, relay, deadzone, saturation and combined ef stability analysis and limit cycles.	iew)- 7		15%
IV	Describing functions of common nonlinearities-hystocklash, relay, deadzone, saturation and combined effective stability analysis and limit cycles. Stability of nonlinear systems-Lyapunov theory (revalutionomous and non-autonomous systems equilibries and stability in the sense of Lyapunov accurately accurate	iew)- 7 prium		15%

	stability, Lyapunov's direct method, positive definite functions and Lyapunov functions, Lyapunov theorem for local stability and global stability		
	SECOND INTERNAL EXAMINATION		
V	Analysis based on Lyapunov's direct method-LTI systems- Krasovskii's method, Variable gradient method for constructing Lyapunov functions-simple examples, Popov's stability criterion. Stability of non-autonomous systems (basic concepts only)- Lyapunov's direct method – simple problems.	7 Al	20%
VI	Non-Linear control system design-stabilisation problems- tracking problems-relations between stabilization and tracking problems-desired behaviour of nonlinear systems- Issues in constructing non-linear controllers- available methods of non-linear control design.	7	20%
	END SEMESTER EXAMINATION		

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

Estd.

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

2014

(15 x 2 = 30 marks)

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

Course	Course name	L-T-P-Credits	Year of			
AE466	INDUSTRIAL ROBOTICS	3-0-0-3	2016			
Prerequis	ite : Nil		2010			
Course O	bjective					
• To	familiarise automation and brief history of robot a	and applications.				
• To	study the kinematics of robots.					
• To	give knowledge about robot end effectors and their	r design.				
• 4.	To learn about Robot Programming methods & La	inguages of robo	t. /			
Syllabus	MJADDOLK	ML/M	V. 1			
Automatic	on and Robotics-configuration of robots-introduction	on to manipulato	r kinematics-			
Basic co	ntrol system models-Robot actuation and fe	eedback compo	onents- General			
considerat	ions in robot material handling- Robot Programmin	ng and AI -Robo	t cell layouts -			
robot cycl	e time analysis	1 m				
Expected	outcome					
The stude	nts will		1:			
1.	be equipped with the automation and brief history	v of robot and ap	plications.			
11.	be familiarized with the kinematic motions of rob	01. nd thain design a	omoonta			
III. Toyt Dool	have good knowledge about robot end effectors al	na men design c	oncepts.			
Richard D	Klafter Thomas A. Chmielewski and Michael Ne	egin "Robotic F	ngineering -			
An Integr	ted Approach" Prentice Hall India 2002		igineering -			
In megre						
Reference1.DePu2.K.Int3.Mian	 Reference books: Deb S.R., "<i>Robotics Technology and Flexible Automation</i> ", Tata McGraw-Hill, Publishing Co., Ltd., 1994. K.S. Fu., R.C.Gonalez, C.S.G.Lee, "<i>Robotics Control Sensing</i> ", Vision and Intelligence, McGraw Hill International Edition, 1987. Mikell P. Groover, Mitchell Weiss, "<i>Industrial Robotics, Technology, Programming and Applications</i>," McGraw Hill International Editions, 1st Edition, 2000. 					
	Course Plan					
Module	Contents	Hours	Semester Exam Marks			
Ι	Automation and Robotics, Robot an	atomy, 7	15%			
	configuration of robots, joint notation schemes volume, introduction to manipulator kine	, work matics,				
	transformations of a 2- DOF arm a 3- DOF arm	in two				
	dimension , a $4 - DOF$ arm in three dim	ension.				
	homogeneous transformations in robot kinematic	cs, D-H				
	notations, solving kinematics equations, introduc	ction to				
	robot arm dynamics.					
II	Basic control system models, slew motion, j	joint – 7	15%			
	interpolated motion and straight line motion, con	trollers				
	like on/off, proportional, integral, proportional	al plus				
	integral plus derivative.	iai pius				

	FIRST INTERNAL EXAMINATION		
III	Robot actuation and feedback components position and velocity sensors, actuators and power transmission devices, mechanical grippers, vacuum cups, magnetic grippers, pneumatic, electric, hydraulic and mechanical methods of power and control signals to end effectors.	7	15%
IV	General considerations in robot material handling, material transfer applications, pick and place operations, palletizing and related operations, machine loading and unloading, die casting, plastic molding, forging, machining operations, stamping press operations using robots.	AN CAI	15%
	SECOND INTERNAL EXAMINATION		
V VI	Robot Programming and AI: Methods - Languages - Computer control and Robot Software -VAL Language – Trajectory Planning, Basic robot motions - Point to point control & continuous path control and interpolations AI – Basics – Goals-AI Techniques – AI & Robotics.	7	20% 20%
	interface, other considerations in work cell design, work cell control, interlocks, error detection and recovery, work cell controller, robot cycle time analysis.		
	END SEMESTER EXAMINATION		

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

Estd.

2014

(15 x 2 = 30 marks)

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

Course	Course name	L-T-P-Credits	Y	ear of
code			Intr	oduction
AE468	NANO ELECTRONICS	3-0-0-3		2016
Course o	bjectives			
• To	impart the basic concepts of nanotechnology			
• To	develop understanding about application of na	nomaterials.		
Syllabus				
Introduct	on to nanotechnology and Nano electronic	cs- fabrication of	of nano	materials-
Introduct	on to characterization tools of nano materials-	basic properties of	of 2d sen	niconductor
nanostruc	tures- The concept of super lattices Kronig	; - Penney mode	el of su	per lattice-
Nanoelec	tonic devices and systems- Nanocomposites- na	anofillers	VI.	
Expected	outcome	UIL/	1L	
• A	t the end of the semester students will have goo	d idea regarding r	ano elec	etronics
al. Toyt boo				
	KS M. Martinaz Duart P. I. Martin Balma F. Agulla	Duada "Namataal	molom	for
1. J.	icroalactronics and optoalactronics" Elsevier	2006	inology j	07
2 W	B Fahrner "Nanotechnology and Nanoeletron	2000. ics" Springer 20()5	
Referenc	e hooks	ies , Springer, 200).)	
1 C	attopadhyay Banerice. "Introduction to Nanos	cience & Technold	ogy".PH	2009
2. D	wanand and Bharadwai." <i>Nanoelectronics</i> ".Pen	tagon Press Delhi	2006	2007
3. G	oser, P. Glosekotter, J. Dienstuhl, "Nanoelectron	nics and nanosyst	ems", Sp	ringer
20	04.		, I	e
4. Po	oole, "Introduction to Nanotechnology", John V	Viley 2006		
5. Pu	ılikel M. Ajayan," <i>Nanocomposite sci<mark>e</mark>nce and t</i>	echnology", Wile	y-VCH 2	2005
6. Sı	apriyo Dutta, " <i>Quantum Transport- A<mark>to</mark>m to tra</i>	<i>nsistor</i> ", Cambrid	ge Univ	ersity
Pı	ess, 2005.			
7. T.	Pradeep, "Nano the Essentials", TMH, 2007.			
	Course Plan			<u>a</u>
N. 1 1	0		TT	Semester
Niodule	Contents		Hours	Exam Morelya
т	Introduction to panetochnology and Nor	no alastronias	7	
1	Impacts Limitations of conventional m	lo electronics,	/	13%
	Introduction to methods of fabrication of u	nano materials-		
	different approaches fabrication of nano-l	avers -Physical		
	Vapor Deposition Chemical Vapor Deposition	sition Epitaxy.		
Molecular Beam Epitaxy Ion Implantation Formation of				
Silicon Dioxide. Fabrication of nanoparticle- grinding with				
	iron balls, laser ablation, reduction methods, sol gel, self-			
assembly.				
II	Introduction to characterization tools of na	no materials	6	15%
	principle of operation of STM, AFM, SEM, 7	TEM, XRD, PL		
	& UV instruments. Mesoscopic	Physics and		
	Nanotechnologies - trends in Microel	lectronics and		
	Optoelectronics, characteristic lengths i	n mesoscopic		
	systems, Quantum mechanical coherer	nce, Quantum		
wells, wires and dots, Density of states and dimensionality.				
FIRST INTERNAL EXAMINATION				
III	The physics of low dimensional structures -	basic properties	7	15%

	of two dimensional semiconductor nanostructures, square quantum wells of finite depth, parabolic and triangular quantum wells, quantum wires and quantum dots. Semiconductor quantum nanostructures and super lattices – MOSFET structures, Heterojunctions, Quantum wells, modulation donad quantum wells, multiple quantum wells.		
IV	The concept of super lattices Kronig - Penney model of super lattice. Transport of charge in Nanostructures under Electric field - parallel transport, perpendicular transport, quantum transport in nanostructures. Transport of charge in magnetic field and quantum Hall effect - Effect of magnetic field on a crystal, the Aharonov-Bohm effect, the Shubnikov-de Hass effect, the quantum Hall effect.	7 M 4 L	15%
	SECOND INTERNAL EXAMINATION		
V	Nanoelectonic devices and systems - MODFETS, heterojunction bipolar transistors, resonant tunnel effect, RTD, RTT,hot electron transistors, Coulomb blockade effect and single electron transistor, CNT transistors, heterostructure semiconductor laser, quantum well laser, quantum dot LED, quantum dot laser, vertical cavity surface emitting laser, quantum well optical modulator, quantum well sub band photo detectors, Infrared detector, Nano switches, principle of NEMS	8	20%
VI	Nanocomposites, nanofillers, high performance materials, polymer nanocomposites, nanoclays, nanowires, nanotubes, nanoclusters etc. Smart materials, self-assembly of materials, safety issues with nanoscale powders.	7	20%
END SEMESTER EXAMINATION			

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

(20 x 2 = 40 marks)

2014

Estd.

Course	Course name	L-T-P-		Year of
code	Credit		Int	roduction
AE472 PETROLEUM ENGINEERING 3-0-0-3				2016
Prerequis				
Course of	bjectives			
• 10	impart the basic concepts of petroleum production,	testing etc.		
• To	impart idea on Health Safety and Environment in P	etroleum Inc	dustry.	
• To	update with the latest trends in Petroleum Engineeri	ng.		
Syllabus	APARABLILIAKA	A	M.	
Refinery j	products - Coking and thermal process - Catalytic	c Cracking	- Corin	g and core
analysis -	Reservoir fluid properties - Reserve estimation & t	echniques -	Well ec	upments -
Well servi	cing & Workover operations - Field processing of	oil & gas -	Product	ion system
analysis &	e optimization - Nodal system analysis - LNG v	value chain	- Lubi	ricating oil
blending s	stocks petrochemical feedstocks - Evaluation of C	BL/VDL, U	JSIT, SI	FI, RFI
Production	logging tools, principles, limitations and application	ons Cost	Evaluati	ion - Latest
trends in F	etroleum Engineering.			
Expected	outcome			
At the end	of the semester students will be able	_		
1. 10	gain advanced knowledge in petroleum engineering			
11. 10 Tart Davi	get knowledge in industrial safety and cost evaluat	.1011		
	(S Lugge Hurley – Medern Detroleum Technology Unst	room Vol I E	dition 2	002
1. A.	C Lucas Hurley, Modern Petroleum Technology Opsi	Italli voi i E		002. ition 2002
2. A.	"H Garry Hardward G E and M I Kaisar Patroloum	Dofining · 7	Foobpold	$\frac{1001}{2002}$
3. J.C	promice CRC Press V Edition	r Kenning . I	recimore	igy and
	Course Plan			
				Semester
Module	Contents		Hours	Exam
		-		Marks
Ι	Refinery products – Refinery Feeds – Crude disti	Illation – 6		15%
	Coking and thermal process : Classification and de	scription		
	of some common rocks with special reference to	o clastic	1	
	and nonclastic reservoir rocks. Origin, migrat	tion and	/	
	accumulation of Petroleum. Petroleum exploration			
	methods.			
II	Catalytic Cracking - Catalytical hydro cracking – Hydro			15%
	processing and Reused processing hydro treating.			
	Petrophysical properties of reservoir rocks. Coring and			
	core analysis. Reservoir fluid properties. Phase behavior of			
	hydrocarbon system. Flow of fluids through porous media.			
Water and gas coning.				
FIRST INTERNAL EXAMINATION				
III	Well equipments. Well completion technique	s. Well 7		15%
	production problems and mitigation. Well servicing &			
	Workover operations. Workover & completion fluids.			
	Formation damage. Well stimulation techniques. Artificial			
	lift techniques. Field processing of oil & gas. Storage and			
	transportation of petroleum and petroleum products.			
	Metering and measurements oil & gas.			

IV	Production system analysis & optimization. Production testing. Multiphase flow in tubing and flow-lines. Nodal system analysis. Pressure vessels, storage tanks, shell and tube heat exchangers, pumps and compressors, LNG value chain.	7	15%
	SECOND INTERNAL EXAMINATION		
V	Lubricating oil blending stocks petrochemical feedstocks. Evaluation of petro physical of sub-surface formations: Principles applications, advantages and disadvantages of SP, resistivity, radioactive, acoustic logs and types of tools used. Evaluation of CBL/VDL, USIT, SFT, RFT. Production logging tools, principles, limitations and applications.	⁸ M AL	20%
VI	 Special type of logging tools. Casing inspection tools (principles, applications and limitations), Formations micro scanner (FMS), NMR logging principles. Standard log interpretation methods. Cross-plotting methods. Cost Evaluation – Economic evaluation of petroleum reused and refineries. Latest trends in Petroleum Engineering: Coal bed methane, shale gas, oil shale, gas hydrate, and heavy oil. 	8	20%
	END SEMESTER EXAMINATION		

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

2014

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

Course code	Course Na	ame	Credits	Year of Introduction	
**492	PROJEC	CT	6	2016	
	Pre	requisite : Nil	-		
Course Object	tives	*** ** * * * * * * * * * * * * * * * *			
• To appl	y engineering knowledge in r	practical problem s	olving		
To fost	er innovation in design of pro	ducts, processes or	systems		
• To deve	elop creative thinking in findi	ng viable solutions	to engineering pr	oblems	
Course Plan		KA	A		
In depth study semester	of the topic assigned in the l	ight of the prelimi	nary report prepa	red in the seventh	
Review and fir	alization of the approach to the	he problem relating	to the assigned to	opic	
Preparing a det	ailed action plan for conducti	ng the investigatio	n, including team	work	
Detailed Analy	sis/Modelling/Simulation/De	sign/Problem Solvi	ing/Experiment as	needed	
Final developn	nent of product/process, testin	g, results, conclusi	ons and future dir	ections	
Preparing a pap	per for Conference presentation	on/Publication in Jo	ournals, if possible	2	
Preparing a rep	oort in the standard format for	being evaluated by	the dept. assessn	nent board	
Final project p	resentation and viva voce by t	he assessment boar	rd including exter	nal expert	
Expected out	come				
The students w	Think innovatively on the day	alonmant of compone	ante producte proc	assas or	
111.	technologies in the engineering	ropinent of component	ents, products, proc		
iv.	Apply knowledge gained in so	lving real life engine	ering problems		
		C C			
Evaluation	10				
Maximum M	larks : 100		1		
(1) Two progr	ess assessments	20% by the facu	Ity supervisor(s)		
(11) Final proj	ect report	30% by the asse	ssment board		
(III) Project p	resentation and viva voce	50% by the asse	ssment board		
Note: All the	three evaluations are mandato	ory for course com	pletion and for aw	arding the final	
grade					
		ista,			
		014			
2014					